DENIS HANYS ENGINEERING SERVICE, LL C 10107 Inwood Drive Houston, Texas 77042-2439 (713) 783-6110

May 24, 2021

Mr. James Elliott 12139 Glen Way Drive Houston, Texas 77070

Dear Mr. Elliott,

Enclosed is the report of the visual inspection that was conducted on the structural foundation of the residence located at 4815 Chantilly Lane, Houston, Texas, by Mr. Denis G. Hanys, PE. This inspection was conducted for you on the date of May 24, 2021.

The information you need should be contained in the attached report. Should you have any questions, however, please give us a call. It was a pleasure to have done business with you, and we hope we may be of additional service to you some time in the future.

Denis Hanys, PÉ President

FOUNDATION INSPECTION REPORT REPORT NO. 21-25

1.0 INTRODUCTION

The purpose of this report is to describe the results of a level B inspection that was conducted on the foundation of the residential building described below. This inspection was conducted at the request of the Client to provide an opinion regarding the performance of this foundation as a primary load-bearing structural member of this building.

In the conduct of this work, Denis Hanys Engineering Service, LLC. has acted as an engineering consultant to provide information to the Client for use as the Client may see fit. As such, Denis Hanys Engineering Service, LLC. involvement in any activities related to this residence shall terminate when the final report is submitted unless otherwise requested in writing by the Client. As a consultant to the Client, it is the sole function of Denis Hanys Engineering Service, LLC. to provide information to the Client regarding the condition of the foundation and not to make any binding judgments on any condition reported nor to determine the need for repair. Such judgments are, of course, left to the Client.

This inspection consisted of a visual examination of the accessible portions of the foundation and the remainder of the structure. In such an examination, it is recognized that a diagnosis of foundation performance can possibly be compromised by the inability to gain access to large portions of the foundation for visual examination, the lack of definition of design and construction parameters that often govern the foundation performance, and inherent limitations to the state of the art of engineering analysis of foundation performance. Denis Hanys Engineering Service, LLC. has conscientiously utilized all visual data available to every extent reasonable and has attempted to acquire available information such that a reasonably accurate diagnosis could be made. Where specifically requested by the Client, Denis Hanys Engineering Service, LLC. has provided recommendations for remedial action, should such be warranted. Such recommendations are provided for information, and Denis Hanys Engineering Service, LLC. assumes no responsibility in the event such repair work should be done. Finally, this report was written to satisfy the specific objectives of the Client. Neither the author of this report nor Denis Hanys Engineering Service, LLC. assume any responsibility whatsoever for the use of this report by any third party person. Client(s) agree in using this report that DHES is not required to give testimony or attendance in Court or at any other hearing with reference to matters discussed herein, unless prior arrangements are made.

2.0 PROJECT DESCRIPTION

The residence inspected was located at 4815 Chantilly Lane, Houston, Texas. The Client for this inspection was Mr. James Elliott. The residence was not occupied and the client was present during the inspection.

The residence inspected was a one-story, single family wood frame dwelling with brick veneer and wood siding. The structure had a combination gable, hip and shed roof with a composition shingle covering. A patio was located in the back yard. The garage was detached and was covered with wood siding. The structure had what appeared to be a reinforced concrete grade-beam-stiffened slab-on-ground foundation. The residence outline is depicted on the resident outline sketch.

3.0 INSPECTION RESULTS

3.1 OBSERVATIONS

Inspection of the foundation of this residence failed to reveal the existence of a severely deflected condition or evidence indicating that major foundation instabilities were present. A slight out-of-level condition was observed in the master bedroom window stool, although, the counters, sills, etc. were observed to be in a reasonably level condition. Deviations from level were observed at isolated locations in the floor. These deviations were measured using an electronic level manometer and the results have been superimposed upon the resident outline sketch. Compensation was made in the floor coverings so that the measurements shown should reflect the true height of the floors. From this sketch, it can be seen that the interior floors tend to be higher in relative elevation in the center portion of the structure. Although, slope was measured on the interior floors, the doors and windows generally fit properly in their frames and doors opened and closed freely. Minor cracks were on the exterior walls, and minor compression ridges were observed on the interior walls; however, it is our opinion that the magnitude of these distortions was not sufficient to be indicative that a severe foundation problem was present.

The concrete in the visible portion of the foundation was observed to be free of significant honeycomb pockets or exposed reinforcement steel, although, minor cracks were observed on the surface of the perimeter grade beams and on the surface of the garage slab. It is important to understand, however, that cracks can be extremely difficult to see and other cracks could feasibly be detected by the Client at some time after the inspection has been completed. Since cracking is a normal property of concrete, and is not necessarily indicative of a foundation functional failure, neither the author nor Denis Hanys Engineering Service, LLC. assume any responsibility whatsoever should additional cracks be found.

3.2 ANALYSIS

In its report titled "Soil Survey of Harris County", the U. S. Soil Conservation Service has classified the soil in this general area to be a member of the Clodine sandy loam family of soils. The report shows soils in this classification to have moderate shrink/swell potentials on the surface with higher shrink/swell potentials just below the surface because of the percentage of expansive clays present.

A profile analysis was performed across sections of the foundation slab, where it appears as though the most slope is present. This is included in the **PROFILE ANALYSIS** Section of this report. Based upon this analysis the amount of bending in the east portion of the structure exceeds the L/360 bending ratio a slight amount.

The presence of sloping floors combined with the absence of a significant amount of foundation-induced damage leads one to believe that the conditions which were the cause of the sloping floors did not occur in the recent past. This condition also tends to lead one to believe that the foundation has possibly reached some reasonable point of stability. According to the client, several trees were removed from the vard adjacent to the structure at some time in the distant past. This was possibly the cause of the slope. With the trees removed, one would expect that the moisture in the support soil has possibly reached some reasonable point of stability. On this basis, no remedial measures are recommended at this time except for the Owner to maintain the moisture content of the soil in as uniform a condition throughout the year as reasonably possible. During periods of drought soil maintenance procedure (balance moisture content around the perimeter) be continued or implemented immediately, because the slab could undergo a drastic change in a short period of time when the soil is allowed to become too dry. It must be understood that any conclusions regarding foundation performance are based upon a very limited amount of evidence. The acceptability of the limitations used in deriving these conclusions and the acceptability of the sloping condition in the floors is totally left to the Client.

4.0 CONCLUSIONS

Based upon the observations made during this inspection, and the analysis that was performed, it is our opinion, the conditions that produced the slope did not occur in the recent past. It is also our opinion, the foundation has reached some reasonable point of stability. No recommendations for remedial measures are provided, except for normal foundation maintenance. This is described in the previous section of this report.

The foregoing discussion is based upon an analysis of information which was obtained through a visual inspection of the foundation and its associated structure combined with such engineering information that was otherwise available. Although this process yields reliable results the majority of the time, it must be recognized that occasionally latent conditions may exist which are not always amenable to detection during a visual inspection of this type. Thus, any inspection of this type is essentially an opinion upon which the Client may place a reasonable degree of reliance; but, under no conditions can such an opinion be considered absolute nor can such opinion be used without any assumption of risk. Also, this inspection was conducted to provide specific information to the Client. The author of this report, therefore, assumes no responsibility whatsoever for the use of this information by another.

0

5.0 CERTIFICATION

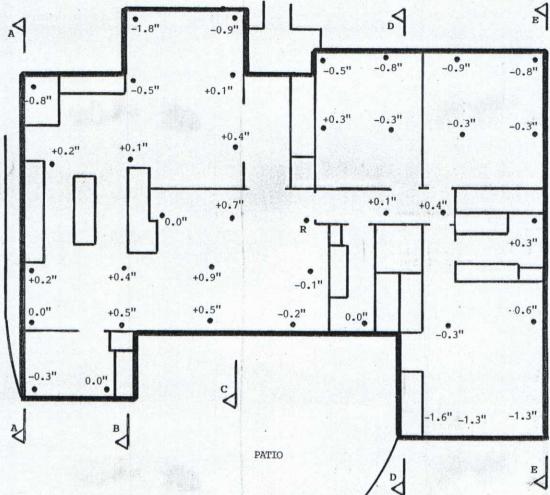
I hereby certify that I did conduct the assessment of the foundation performance of the residence located at 4815 Chantilly Lane, Houston, Texas, on the date of May 24, 2021. I further certify that I am a Licensed Professional Engineer in the State of Texas, whose registration number is 49157. I further certify that the findings and conclusions contained in this report have been, to the best of my knowledge, correctly and completely stated without bias and are based upon my observations and my experience. No responsibility is assumed for events that occur subsequent to the submission of this report and no warranty, either expressed or implied, is hereby made.

Han Denis G. Hanys

Licensed Professional Engineer FIRM # 3665

DENIS HANYS ENGINEERING SERVICE, LLC	FOUNDATION INSPECTION CHECKLIST
DENIS HANYS ENGINEERING SERVICE, LLC 10107 INWOOD DR.	The other many a state,
HOUSTON, TEXAS 77042-2439	CLIENT: JIM ELLIOTT
(713) 783-6110	CLIENT: Jim EULIOTT 12139 GEN WAY DE. Houston, Tekas 77070
	ADDRESS: 4815 CHANTING LN
	451 M, Ce, 21-25
STRUCTURAL CONFIGURATION RESIDENCE OCCUPIED: Y N WITNESSED BY: CLIENT: N NO. OF STORIES: ON & Brack FIREPLACE LOCATION: TYPE ROOF: GABLE!, Hip, SHOD TYPE ROOF COVERING: C GARAGE: ATTACHED (DETACHED) CARPORT NONE SIDING IF DETACHED FOUNDATION: REINFOTICED SLAB -ON - GROUND	CLIENT'S AGENT Y N OWNER'S AGENT: Y N <u>NIA</u> PATIO LOCATION: <u>BACK YARD</u> POOL LOCATION: <u>NIA</u> CHED:
OBSERVATIONS:	
EXTERIOR CRACKS: ON DIAG HL > 1/3"ON WEST WALL / WEST OF NECORNAL JUNG GB, DIAG HLON NO.	12-19 50.00 NW COL. DIAG HL(+) ON NO. WALLID WAL NOME CONDE VINTO GB
CASING SEPARATION: Y 🛞	
FASCIA SEPARATION ON DO EAST FB SUP C NE OF OF SE OF	165 G
AVERAGE HEIGHT OF VISIBLE SLAB SHOWING: REINFORCING STEEL VISIBLE: Y@ FOUNDATION SOIL ADEQUATELY COVERED: ON CRACKS IN SIDEWALK/PATIO/DRIVEWAY ON INTERIOR WALL CRACKS ON VOIT CRON FOYDE SO. WALL OU	HONEYCOMB POCKETS: Y(N)
FOUNDATION SOIL ADEQUATELY COVERED:	CRACKS IN GARAGE FLOOR: ON
CRACKS IN SIDEWALK/PATIO/DRIVEWAY	TREE ROOTS NEXT TO STRUCTURE: YN
FLOORS LEVEL: Y N	
DOORS FIT: (Y) N	
COUNTER TOPS LEVEL ON MASION BOD WST W 10"/12'	
PIER & BEAM ONLY	
PADS AND BLOCKS TILTED: Y N	DETERIORATED WOODVISIBLE: Y N
EXCESSIVE MOISTURE IN CRAWL SPACE: V N	UNSUPPORTED SILLS: Y N ADEQUATE VENTIDATION: Y N
SOIL CONTACTING WOOD: YW	
RECOMMENDATIONS:	
	Not Approp To HAVE OCCUPETO IN RECOVE
RECOMMENDATIONS: THE CONDITION THAT PRODUCED SCORE DOGS A PAST	NOT APPOAR TO HAVE OCCURRED IN RECONT
THE CONDITION THAT PRODUCED SLOPE DOGS	NOT APPOAR TO HAVE OCCURRED IN RECONT
THE CONDITION THAT PRODUCED SLOPE DOGS	NG SERVICE
THE CONDITION THAT PRODUCED SCORE POSSION PAST FEE A FEE OF S 375-92 FOR PROFESSIONAL ENGINEERING WAS PAID AT THE INSPECTION CHECK # 1955	NG SERVICE
THE CONDITION THAT PEDBULCED SCORE POES / PAST FEE A FEE OF \$ 375 00 FOR PROFESSIONAL ENGINEERING WAS PAID AT THE INSPECTION CHECK # 1955 WAS NOT PAID	NG SERVICE
THE CONDITION THAT PRODUCED SCORE POES / PAST FEE A FEE OF \$ 375 00 FOR PROFESSIONAL ENGINEERING WAS PAID AT THE INSPECTION CHECK # 1955 WAS NOT PAID CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION A FOR PROFESSIONAL ENGINEERING WAS NOT PAID CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION A FOR PROFESSIONAL ENGINEERING	DN DESCRIBED ABOVE ON THE DATE OF <u>5/24/202</u> BSERVATIONS AND EXPERIENCE; SUCH INSPECTIONS BEING ION OF SYMPTONS. NO WARRANTY OR RESPONSIBILITY FOR
THE CONDITION THAT PRODUCED SCORE Past FEE A FEE OF \$ 375 00 FOR PROFESSIONAL ENGINEERING WAS PAID AT THE INSPECTION CHECK # 1955 WAS NOT PAID CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION CHECK # 1955 O WAS NOT PAID CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION	DN DESCRIBED ABOVE ON THE DATE OF <u>5/24/202</u> BSERVATIONS AND EXPERIENCE; SUCH INSPECTIONS BEING ION OF SYMPTONS. NO WARRANTY OR RESPONSIBILITY FOR
THE COUDITION THAT PEDDUCCO SCORE Past FEE A FEE OF S 375-92 FOR PROFESSIONAL ENGINEERING WAS PAID AT THE INSPECTION CHECK # 1955 WAS NOT PAID WAS NOT PAID CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION CERTIFICATION I HEREBY CERTIFY THAT I DID PERFORM THE INSPECTION CONDITIONS NOT DETECTABLE BY VISUAL INSPECTION	DN DESCRIBED ABOVE ON THE DATE OF <u>5/24/202</u> BSERVATIONS AND EXPERIENCE; SUCH INSPECTIONS BEING ION OF SYMPTONS. NO WARRANTY OR RESPONSIBILITY FOR

SKETCHES


THIS SKETCH WAS PREPARED FOR THE PURPOSE OF DISPLAYING MEASURED FLOOR HEIGHTS AND IS NOT REPRESENTED TO BE A TRUE COPY BAC

AND LOCATIONS OF SECTIONS 4815 CHANTILLY LANE

N

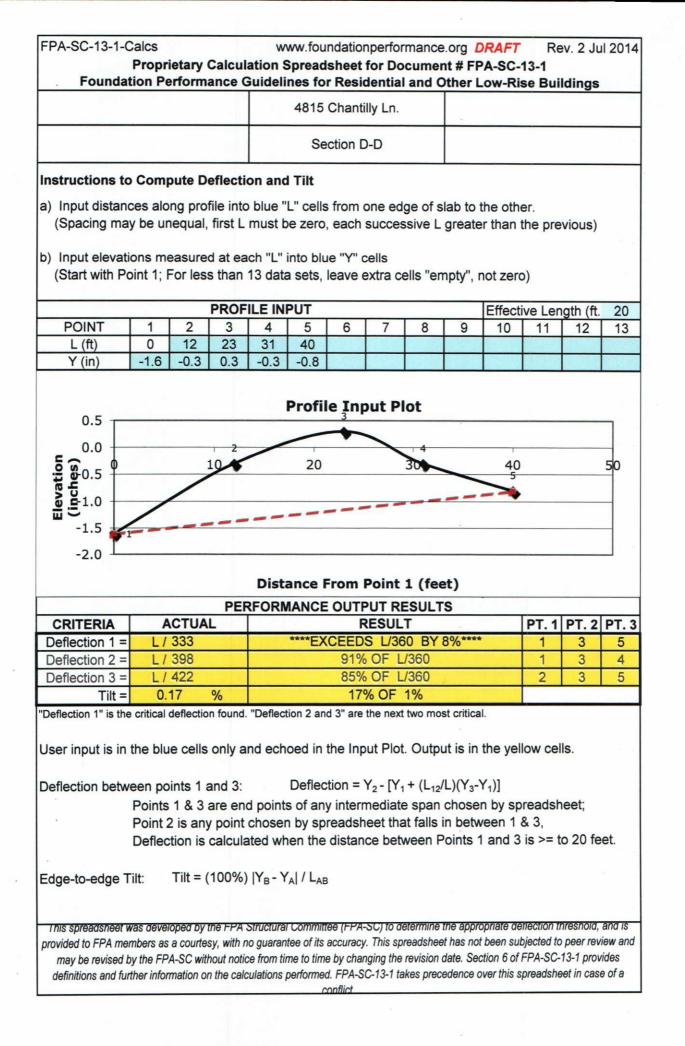
RESIDENCE OUTLINE SHOWING MEASURED RELATIVE HEIGHTS

4815 CHANTILLY LANE HOUSTON, TEXAS

R - SIGNÍFIES THE 0.0" DATUM. ALL LEVEL MEASUREMENTS ÁRE RELATIVE TO THIS DATUM. COMPENSATION WAS MADE IN THE FLOOR COVERINGS SO THAT THE MEASUREMENTS SHOWN, REFLECT THE TRUE HEIGHT OF THE FLOORS.

GARAGE

SCALE IN FEET


PROFILE ANALYSIS

110

	tion Per					Chanti			-				
					Se	ction A	A-A						
nstructions to	Comp	ute D	eflectio	on and	t Tilt								
) Input distan (Spacing ma								-				vious)	
									3			,	
) Input elevat (Start with Po								ells "en	npty", I	not zero	D)		
			PROF		DUIT					Effort	ivelor	ath (ft	20
POINT	1	2	3	4	5	6	7	8	9	10	11	ngth (ft. 12	13
L (ft)	0	7	13	24	33								
Y (in)	-0.3	0.0	0.2	0.2	-0.8						15-35		
						-							
0.4				3	Profil	e Inp	out P	4					_
0.2		2	-	-+	-			*					-
5 0 ^{0.0}	_	-								1			-
Elevation (inches) 9.0 9.0 9.0			10			2	0		1	30			40
													-
- 0.0	_									-7	5		
-0.8											•		
1.0				Dist	ance F	rom	Point	1 (fee	et)				
		07114		RFORM	ANCE				S				
		CTUA	.L				OF L				No. of Concession, name	PT. 2	
CRITERIA	11	431					OFL	And the second second			2	4	5
Deflection 1 =		436									1		5
Deflection 1 = Deflection 2 =	L/4						OF L	/360				4	
Deflection 1 = Deflection 2 =	L/4	459	%			79%	OF L % OF					4	
Deflection 1 = Deflection 2 = Deflection 3 = Tilt =	L / 4 L / 4 0.1	459 3	1900	"Deflec	tion 2 an	79% 13	% OF	1%	st critica	al.		4	
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the	L / 4 L / 4 0.1 e critical d	459 3 leflectio	on found.			79% 13 d 3" are	% OF the next	1% two mos					
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the	L / 4 L / 4 0.1 e critical d	459 3 leflectio	on found.			79% 13 d 3" are	% OF the next	1% two mos					
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the ser input is in	L/4 L/4 0.1 e critical d the blue	459 3 leflectio e cells	on found. s only a		oed in	79% 13 d 3" are the Inp	% OF the next out Plot	1% two mos	ut is in	the yel			
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the ser input is in	L/4 L/4 0.1 e critical d the blue	459 3 leflectio e cells ints 1 a	on found. conly at and 3:	nd ech	oed in Deflec	79% 13 d 3" are the Inp tion =	the next out Plot $Y_2 - [Y_1]$	1% : two mo: :. Outpu : + (L ₁₂ /	ut is in ′L)(Y ₃ -	the yel Y ₁)]	low ce	lls.	
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in	L/4 0.1 e critical d the blue veen point Points Point 2	459 3 effectio e cells ints 1 a 1 & 3 ; is any	on found. conly as and 3: are end y point	nd ech d point chose	Deflects of any n by sp	79% 13 d 3" are the Inp tion = y interr readsh	% OF the next out Plot $Y_2 - [Y_1$ mediate	$\frac{1\%}{1\%}$ two most . Output . + (L ₁₂ / e span at falls i	ut is in /L)(Y ₃ - chose in betv	the yel Y ₁)] n by sp veen 1	low ce preadsl & 3,	lls. neet;	
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in	L/4 0.1 e critical d the blue yeen poin Points	459 3 leflectio e cells ints 1 a 1 & 3 ; is any	on found. conly as and 3: are end y point	nd ech d point chose	Deflects of any n by sp	79% 13 d 3" are the Inp tion = y interr readsh	% OF the next out Plot $Y_2 - [Y_1$ mediate	$\frac{1\%}{1\%}$ two most . Output . + (L ₁₂ / e span at falls i	ut is in /L)(Y ₃ - chose in betv	the yel Y ₁)] n by sp veen 1	low ce preadsl & 3,	lls. neet;	
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in Deflection betw	L / 4 0.1 e critical d the blue veen poin Points Point 2 Deflect	459 Beflection ants 1 a 1 & 3 I is any tion is	on found. conly as and 3: are end y point calcula	nd ech d point chose ated wh	Deflect s of any n by sp nen the	79% 13 d 3" are the Inp tion = y interr readsh distan	% OF the next out Plot $Y_2 - [Y_1$ mediate	$\frac{1\%}{1\%}$ two most . Output . + (L ₁₂ / e span at falls i	ut is in /L)(Y ₃ - chose in betv	the yel Y ₁)] n by sp veen 1	low ce preadsl & 3,	lls. neet;	
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in Deflection betw	L / 4 0.1 e critical d the blue veen poin Points Point 2 Deflect	459 Beflection ants 1 a 1 & 3 I is any tion is	on found. conly as and 3: are end y point calcula	nd ech d point chose ated wh	Deflects of any n by sp	79% 13 d 3" are the Inp tion = y interr readsh distan	% OF the next out Plot $Y_2 - [Y_1$ mediate	$\frac{1\%}{1\%}$ two most . Output . + (L ₁₂ / e span at falls i	ut is in /L)(Y ₃ - chose in betv	the yel Y ₁)] n by sp veen 1	low ce preadsl & 3,	lls. neet;	
Deflection 1 = Deflection 2 = Deflection 3 =	L / 4 0.1 e critical d the blue veen poin Points Point 2 Deflect	459 Beflection ants 1 a 1 & 3 I is any tion is	on found. conly as and 3: are end y point calcula	nd ech d point chose ated wh	Deflect s of any n by sp nen the	79% 13 d 3" are the Inp tion = y interr readsh distan	% OF the next out Plot $Y_2 - [Y_1$ mediate	$\frac{1\%}{1\%}$ two most . Output . + (L ₁₂ / e span at falls i	ut is in /L)(Y ₃ - chose in betv	the yel Y ₁)] n by sp veen 1	low ce preadsl & 3,	lls. neet;	

					4815	Chanti	lly Ln.						
					Se	ection B	-B						
nstructions to a) Input distanc (Spacing may b) Input elevation (Start with Po	ces alo y be un ons me	ng pro nequal, easure	ofile into , first L ed at ea	blue " must b ch "L"	L" cells be zero into blu	, each : ue "Y" c	succes ells	sive L	greate	er than	the pre	evious)	
			PROF	ILE IN	PUT					Effect	tive Ler	ngth (ft.	20
POINT	1	2	3	4	5	6	7	8	9	10	11	12	13
L (ft) Y (in)	0.0	7 0.5	13	24 0.1	33 -0.5	40					-		
0.5		*		-		4							
A CONTRACTOR OF	<	*	3	-		4							
									5				_
Elevation 0.5 0 1.0			10		20			30	5	40)		50
-1.5			10		20			30		40	•		_50
			10	Dist	20	From I	Point	30		40	•		50
-1.5								1 (fee	et)	40	•		_50
-1.5 -2.0						OUTF R	UT RI	30 1 (fee ESULT	et)	40	PT. 1	PT. 2	
-1.5 -2.0 CRITERIA Deflection 1 =	L/	407				E OUTF R 89%		30 1 (fee ESULT T /360	et)	40	PT. 1	4	6
-1.5 -2.0 CRITERIA Deflection 1 = Deflection 2 =	L/ L/					E OUTP R 89% 81%	OF L	30 1 (fee ESULT T /360 /360	et)	40	PT. 1		
-1.5 -2.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt =	L / L / L / 0.3	407 444 487 38	%	RFORM	MANCE	E OUTF 89% 81% 74% 389	OF L OF L OF L OF L OF L	30 1 (fee ESULT T /360 /360 /360 1%	et) S	6	PT. 1 1 3	4 5	6 6
-1.5 -2.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in	L / L / 0.3 e critical of the blu een po Points Point 2	407 444 487 38 deflection ints 1 1 & 3 2 is any	% on found. s only a and 3: are en y point	"Deflect nd ech	tion 2 an oed in Deflects s of an n by sp	E OUTF R 89% 81% 74% 389 d 3" are	PUT RI ESUL OF L OF L OF L OF L 6 OF the next ut Plot $Y_2 - [Y_1$ nediate eet that	30 1 (fee ESULT T /360 /360 /360 1% : two mo : Output + (L ₁₂ / e span at falls	et) S st critica ut is in /L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp veen 1	PT. 1 1 3 1 llow ce preadsł & 3,	4 5 3 Ils.	6 6
-1.5 -2.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 =	L / L / 0.3 e critical d the blu een po Points Point 2 Deflec	407 444 487 38 deflection ints 1 1 & 3 2 is any tion is	% on found. s only a and 3: are en y point	"Deflect nd ech d point choser ated wh	tion 2 an oed in Deflects s of an n by sp nen the	E OUTF R 89% 81% 74% 389 d 3" are the Inp the Inp the Inp the Inp the Inp the Inp the Inp the Inp the Inp	PUT RI ESUL OF L OF L OF L OF L 6 OF the next ut Plot $Y_2 - [Y_1$ nediate eet that	30 1 (fee ESULT T /360 /360 /360 1% : two mo : Output + (L ₁₂ / e span at falls	et) S st critica ut is in /L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp veen 1	PT. 1 1 3 1 llow ce preadsł & 3,	4 5 3 Ils.	6 6

					4815	Chanti	lly Ln.						A 19
					Se	ection C	C-C						
nstructions to	Comput	te De	eflectio	on and	l Tilt				5. 14				
) Input distance						s from (one ed	ne of s	lah to t	the oth	or		
(Spacing may								-				evious)	
											÷.		
) Input elevation													
(Start with Po	int 1; For	riess	stnan	13 data	a sets,	leave e	extra ce	ells "er	npty", r	not zer	0)		
			PROF	ILE IN	PUT					Effect	ive Ler	ngth (ft	20
POINT	1	2	3	4	5	6	7	8	9	10	11	12	13
L (ft)		6	14	19	27	33							
Y (in)	0.5 0	0.9	0.7	0.4	0.1	-0.9			1.1	ALC: N			
		2			Profi	le Inp	out Pl	ot					
1.0	1	-			3								
■ _ 0.5 ■		•			~	4							
						-							
		-							5				
0.0 H									5	1			
0.0 0			10			2	0		5	80			40
Elevation 0.0 (inches)			10			2	0		5	2	6		40
			10			2	0		5		6		40
Elevati 0.0-0.5 -1.0			10	~~.		2	0		5		6		40
			10		ance	From	Point	1 (fee	*	2	6		40
-1.0			PEF	Dista			UT RE	SULT	et)	2	`		
		TUAI	PEF	Dista		E OUTR F	PUT RE	ESULT T	et)	2	PT. 1	PT. 2	
-1.0 CRITERIA Deflection 1 =	L / 49	99	PEF	Dista		E OUTF F	OF L	ESULT T /360	et)	2	PT. 1	- 3	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 =	L / 49 L / 53	9 9 31	PEF	Dista		E OUTR F 72% 68%	OF L	ESULT T /360 /360	et)	×	PT. 1 1 1	3 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 =	L / 49 L / 53 L / 54	99 31 40	PEF	Dista		E OUTF F 72% 68% 67%	OF L	ESULT T /360 /360 /360	et)	×	PT. 1	- 3	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 =	L / 49 L / 53	99 31 40	PEF	Dista		E OUTF F 72% 68% 67%	OF L	ESULT T /360 /360 /360	et)	× ~	PT. 1 1 1	3 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt =	L / 49 L / 53 L / 54 0.35	99 31 40	PEF L	Dista	MANCE	E OUTF F 72% 68% 67% 35%	OF L OF L OF L OF L OF L	ESULT T /360 /360 /360 1%	et) s		PT. 1 1 1	3 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the	L / 49 L / 53 L / 54 0.35 critical def	99 31 40 flection	PEF L % n found.	Dist:	ion 2 an	E OUTF F 72% 68% 67% 35° ad 3" are	OF L OF L OF L OF L OF L OF L OF L	ESULT T /360 /360 /360 1% two mo	et) S st critica		PT. 1 1 1 2	3 5 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the	L / 49 L / 53 L / 54 0.35 critical def	99 31 40 flection	PEF L % n found.	Dist:	ion 2 an	E OUTF F 72% 68% 67% 35° ad 3" are	OF L OF L OF L OF L OF L OF L OF L	ESULT T /360 /360 /360 1% two mo	et) S st critica		PT. 1 1 1 2	3 5 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in the	L / 49 L / 53 L / 54 0.35 critical defi	99 31 40 flection	PEF L % n found. only a	Dist:	ion 2 an	E OUTF F 72% 68% 67% 35° d 3° are the Inp	PUT RE RESUL OF L OF L OF L OF L W OF the next	ESULT T /360 /360 /360 1% two mo	et) S st critica ut is in	the ye	PT. 1 1 1 2	3 5 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in the Deflection between	L / 49 L / 53 L / 54 0.35 critical defi	99 31 40 flection cells ts 1 a	PEF L % n found. only a	Dista RFORM "Deflect	ion 2 an oed in Deflec	E OUTF F 72% 68% 67% 35° dd 3" are the Inp ction = 1	PUT RE RESUL OF L OF L OF L OF L 0 OF L D 0 OF L D 0 OF L D 0 OF L D 0 OF L D D D D D D D D D D D D D D D D D D	ESULT T /360 /360 /360 1% two mo . Outpu + (L ₁₂ /	et) S st critica ut is in 'L)(Y ₃ -'	the ye	PT. 1 1 2	3 5 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in formation of the second Deflection between	L / 49 L / 53 L / 54 0.35 critical defit the blue of een point Points 1	99 31 40 flection cells ts 1 a & 3 a	PEF L % only a and 3: are end	Dista RFORM "Deflect nd ech	ion 2 an oed in Deflects	E OUTF F 72% 68% 67% 35° d 3" are the Inp the Inp ction = " y interr	PUT RE RESUL OF L OF L OF L OF L OF L W OF the next out Plot Y_2 - $[Y_1]$ mediate	ESULT T /360 /360 /360 1% two mo + (L ₁₂ / e span	et) 'S st critica ut is in 'L)(Y ₃ -' chose	the ye Y₁)] n by sp	PT. 1 1 1 2 llow ce	3 5 5	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in the Deflection between	L / 49 L / 53 L / 54 0.35 critical defit the blue of een point Points 1 Point 2 is	99 31 40 flection cells ts 1 a & 3 a s any	PEF L % only a and 3: are end point	Dista RFORM "Deflect nd ech d points choser	ion 2 an oed in Deflects of an h by sp	E OUTF F 72% 68% 67% 350 ad 3" are the Inp ction = ' y interr readsh	PUT RE RESUL OF L OF L OF L OF L 0 OF L D OF L 0 OF L D OF L 0 OF L D O	ESULT T /360 /360 /360 1% two mo + (L ₁₂ / e span at falls	et) s st critica ut is in 'L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp reen 1	PT. 1 1 1 2 llow ce preadsl & 3,	3 5 5 Ils.	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in the Deflection between	L / 49 L / 53 L / 54 0.35 critical defit the blue of een point Points 1	99 31 40 flection cells ts 1 a & 3 a s any	PEF L % only a and 3: are end point	Dista RFORM "Deflect nd ech d points choser	ion 2 an oed in Deflects of an h by sp	E OUTF F 72% 68% 67% 350 ad 3" are the Inp ction = ' y interr readsh	PUT RE RESUL OF L OF L OF L OF L 0 OF L D OF L 0 OF L D OF L 0 OF L D O	ESULT T /360 /360 /360 1% two mo + (L ₁₂ / e span at falls	et) s st critica ut is in 'L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp reen 1	PT. 1 1 1 2 llow ce preadsl & 3,	3 5 5 Ils.	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in formation of the second Deflection between	L / 49 L / 53 L / 54 0.35 critical defit the blue of the blue of een point Points 1 Point 2 is Deflectio	99 31 40 cells ts 1 a & 3 a s any on is o	PEF L % only a and 3: are end point calcula	Dista RFORM "Deflect and ech d points choser ated wh	ion 2 an oed in Deflects of an o by sp ien the	E OUTF F 72% 68% 67% 35° dd 3" are the Inp ction = " y interr preadsh e distan	PUT RE RESUL OF L OF L OF L OF L 0 OF L D OF L 0 OF L D OF L 0 OF L D O	ESULT T /360 /360 /360 1% two mo + (L ₁₂ / e span at falls	et) s st critica ut is in 'L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp reen 1	PT. 1 1 1 2 llow ce preadsl & 3,	3 5 5 Ils.	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in formation of the second Deflection between	L / 49 L / 53 L / 54 0.35 critical defit the blue of the blue of een point Points 1 Point 2 is Deflectio	99 31 40 cells ts 1 a & 3 a s any on is o	PEF L % only a and 3: are end point calcula	Dista RFORM "Deflect nd ech d points choser	ion 2 an oed in Deflects of an o by sp ien the	E OUTF F 72% 68% 67% 35° dd 3" are the Inp ction = " y interr preadsh e distan	PUT RE RESUL OF L OF L OF L OF L 0 OF L D OF L 0 OF L D OF L 0 OF L D O	ESULT T /360 /360 /360 1% two mo + (L ₁₂ / e span at falls	et) s st critica ut is in 'L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp reen 1	PT. 1 1 1 2 llow ce preadsl & 3,	3 5 5 Ils.	PT. 3
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in the Deflection between	L / 49 L / 53 L / 54 0.35 critical defit the blue of the blue of een point Points 1 Point 2 is Deflectio	99 31 40 cells ts 1 a & 3 a s any on is o	PEF L % only a and 3: are end point calcula	Dista RFORM "Deflect and ech d points choser ated wh	ion 2 an oed in Deflects of an o by sp ien the	E OUTF F 72% 68% 67% 35° dd 3" are the Inp ction = " y interr preadsh e distan	PUT RE RESUL OF L OF L OF L OF L 0 OF L D OF L 0 OF L D OF L 0 OF L D O	ESULT T /360 /360 /360 1% two mo + (L ₁₂ / e span at falls	et) s st critica ut is in 'L)(Y ₃ -' chose in betw	the ye Y ₁)] n by sp reen 1	PT. 1 1 1 2 llow ce preadsl & 3,	3 5 5 Ils.	PT. 3
CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the Jser input is in f Deflection betwee Edge-to-edge T	L / 49 L / 53 L / 54 0.35 critical defi the blue of een point Points 1 Point 2 is Deflectio ilt: Til	99 31 40 flection cells ts 1 a & 3 a s any on is o lt = (1	PEF L % n found. only a and 3: are end point calcula 100%)	Dista RFORM "Deflect nd ech d points choser ated wh Y _B - Y	ion 2 an oed in Deflects of an by sp hen the ran by sp	E OUTF F 72% 68% 67% 35° dd 3" are the Inp ction = " y interr readsh e distan	PUT RE RESUL OF L OF L OF L 0 OF L D OF L 0 OF L D OF	ESULT T /360 /360 1% two mo + (L ₁₂ / e span t falls ween F	et) S st critica ut is in 'L)(Y ₃ -' chose in betw Points 1	the yes (1)] n by sp veen 1 and 3	PT. 1 1 1 2 llow ce preadsl & 3, is >= 1	3 5 5 IIs. to 20 fe	PT. 3 6 6 6
-1.0 CRITERIA Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the Jser input is in f Deflection between Edge-to-edge T	L / 49 L / 53 L / 54 0.35 critical defi the blue of een point Points 1 Point 2 is Deflectio iilt: Til	error by the courtes	PEF L % n found. only a and 3: are end point calcula 100%)	Dista RFORM "Deflect nd ech d points choser ated wh Y _B - Y	tion 2 and oed in Deflects of an h by sp hen the f_A / L_{AE}	E OUTF F 72% 68% 67% 35° dd 3" are the Inp ction = " y interr readsh e distan	PUT RE RESUL OF L OF L OF L 0 OF C DF L 0 OF L DF C DF C DF C DF C DF	ESULT T /360 /360 /360 1% two mo two mo + (L ₁₂ / e span at falls ween F etermine readshee	et) s st critica ut is in 'L)(Y ₃ -' chosen in betw Points 1	the yes (1)] n by sp veen 1 and 3 opnate de been su	PT. 1 1 1 2 llow ce preadsl & 3, i is >= i bjected to	3 5 5 IIs. to 20 fe	PT.: 6 6 6

						Chanti		and O				3-	
			1		Se	ection E	-Е						
nstructions to	Comp		oflocti	0.0.000	T 114					-			
a) Input distand (Spacing may b) Input elevatio (Start with Po	y be une ons mea	equal,	first L d at ea	must b ch "L"	into blu	, each ue "Y" c	succes ells	ssive L	greate	er than	the pre	evious)	
			PROF		PUT					Effect	ive Ler	ngth (ft.	20
POINT	1	2	3	4	5	6	7	8	9	10		12	13
L (ft)	0	12	22	31	40				32.50				
Y (in)	-1.3	-0.6	0.3	-0.3	-0.8				-				
			10	/	20			4		40	1		50
Elevation 1.0 Elevation	/	/	2							5			
-1.5								1 (fee			_		
	AC	TUA		FORM	IANCE		ESUL	ESULT	5		DT 1	DT 2	DT ·
CRITERIA	AU	_	-		****EX			BO BY	1%****	C. State	2	PT. 2	5
CRITERIA Deflection 1 =							OF L				1	3	5
Deflection 1 =	L/3 L/3					0070	UI L						
Deflection 1 = Deflection 2 =	L/3 L/3 L/4	62 18				86%	OF L				1	3	4
Deflection 1 = Deflection 2 = Deflection 3 = Tilt =	L / 3 L / 3 L / 4 0.10	62 18 0	% n found.	"Deflect	ion 2 an	86% 109	OF L 6 OF	1%	t critica	I.	1	3	4
Deflection 1 = Deflection 2 = Deflection 3 = Tilt = Deflection 1" is the User input is in the Deflection between	L / 3 L / 3 L / 4 0.10 critical de	62 18 0 eflectio cells nts 1 a 1 & 3 a is any	n found. only an and 3: are end y point	nd ech d points choser	Deflects of any	86% 109 d 3" are the Inp tion = ` y intern readsh	OF L 6 OF the next ut Plot $f_2 - [Y_1$ nediate eet that	1% two mos . Outpu + $(L_{12}/l$ e span o at falls in	t is in L)(Y ₃ -` chose n betw	the yel Y ₁)] n by sp veen 1	llow ce preadsł & 3,	lls. neet;	

.